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Abstract—In this paper an improved approach is presented
for the state estimation of unmanned aerial vehicles (UAVs). The
three-loop technique is based on Extended Kalman Filters. From
them EKF1 solve the quaternion based orientation (attitude)
estimation using IMU and magnetometer. EKF2 improves the
attitude estimation if GPS information is present. The third filter
EKF3 determines the remaining state variables including the
biases in an external loop if GPS measurement is available and
tolerates the large difference between IMU and GPS frequencies.
The method can be applied for state estimation of any type of
vehicles. It is especially useful for vehicles having large (2-3 G)
acceleration changes typical for UAVs. The results can latter be
used for identification of the nonlinear dynamic model of vehicles
(control surface, thrust and inertia effects) building the basis for
advanced control.

Index Terms—State estimation, EKF approach, Sensor fusion,
UAV, Real flight data

I. I NTRODUCTION

State estimation for UAVs (Unmanned Aerial Vehicles) is an
intermediate important step in modeling and control. The paper
concentrates on the state estimation only. Popular approaches
are based on EKF (Extended Kalman Filter) [1], sigma-point
estimators among them UKF (Unscented Kalman Filter) [2]
and symmetry-preserving observers (SPO) using Lie-Group
technique [3]. A comparison of the methods can be found in
[4]. Novel methods of tuning the error state coveriance matrix
were suggested in [5] and [6]. State estimation for a sailplane
was considered in [7] and [8].

In this paper an improved EKF method will be presented
for an UAV based on the kinematic differential equations of
navigation according to the WGS-84 standard of GPS.

The kinematic differential equations use the frames of ECI
(Earth Centered Inertia), ECEF (Earth Centered Earth Fixed),
NED (North, East, Down) and Body (vehicle body) coordinate
systems. In the sequel they will be referred by the letters i,e,
n and b, respectively.

ECEF is moving together with the earth. Its sidereal rotation
rate relative to ECI isωE = 7.2921151467 · 10−5rad/s. The
earth can be approximated by a rotational ellipsoid.

In ECEF frame each pointP can be characterized by a
vector r = (x, y, z)T from the origin to the point. However,
in ECEF the point can also be identified by the geodetic
coordinatesp = (ϕ, λ, h)T , which are the latitude, longitude
and hight, respectively, and(x, y, z)T can be determined from
them. Conversion methods amongst them are available.

First the intersection of the plane throughP and thez-
axis with the rotational ellipsoid will be determined. The
intersection is an exemplar of the rotated ellipse. The hight h

of the pointP is the shortest distance from the ellipse which
defines the pointQ on the ellipse. In pointQ the tangent of
the ellipse can be determined. The line throughQ orthogonal
to the tangent intersects thez-axis in the pointR = (0,−c).
TheQR section is the normal to the tangent, its length isN .

GPS navigation is performed relative to ECEF while the
IMU (3D acceleration and 3D angular velocity) sensors mea-
sure relative to ECI. We prefer the use of INS navigation.

II. INS NAVIGATION

The orientation of theKn frame relative toKe, i.e. the
mapping fromKn toKe, can be found by using two rotations:

Ren = Rot(z, λ)Rot(y,−(
π

2
+ ϕ)) (1)

The orientation matrixRnb (attitude, DCT) is the transforma-
tion from Kb to Kn. It can also be described by Euler (roll,
pitch, yaw) anglesφ, θ, ψ or unit quaternionq = (s, w) where
s = q0 ∈ R1 andw = (q1, q2, q3)

T ∈ R3 yielding

Rnb = Euler(φ, θ, ψ) = I3 + 2s[w×] + 2[w×][w×] (2)

Here [w×] is the matrix of vector product. The quaternion
product isq1 ⋆ q2 = (s1s2−wT1 w2, w1×w2+ s1w2+ s2w1).

There are different techniques for orientation character-
ization, however conversion between them is possible [9].
Especially, letRnb and q the orientation description ofKb

relative toKn and denoteωbnb = (P,Q,R)T =: ω the angular
velocity of the vehicle relative toKn.

A. Differential equations of the orientation descriptions
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Here we used the short notationsS,C, T for sin, cos, tan.

B. Long distance INS navigation

In case of long distance INS navigation the NED frame
cannot be considered fixed, i.e. it is a wandering NED frame.
The orientation of the body frame will be considered relative
to the moving NED.



DenoteM andN the cross-directional curvatures andR
their average value:
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(1− e2S2
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3/2
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√
MN (5)

Denotef̃ b the 3D measurement of the acceleration sensor of
the IMU andba its bias then its value in the NED frame is
fn = Rnb (f̃

b − ba). Notice thatfn contains also the gravity
effect gn = (0 0 γ)T whose approximation by the simple
Rogers model isγ(h) = g0(R)/(R+h))2 whereh is the hight
and g0 = 9.81425 is an average value forh = 0. Similarly,
denoteω̃b the 3D measurement of the angular velocity sensor
of the IMU andbω its bias. Notice that the IMU measures the
acceleration and the angular velocity relative to ECI. Since
ωbib = Rbn(ω

n
ie+ω

n
en)+ω

b
nb therefore for constant bias yields:
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whereϕ is the geodetic latitude.

Kinetic equations of GPS with IMU[10]:
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The derivatives of the constant biases are simplyḃa = 0 and
ḃω = 0.

Notice that in the above kinematic equations the ’position’
vector p = (ϕ, λ, h)T represents the real position vector
r = (x, y, z)T from ECEF to BODY in abstract form elimi-
nating the large order of the components ofr. Its derivative
Rne ṙ = v = (vN , vE , vD)T is the relative velocity of the
vehicle to the (rotating) ECEF frame expressed in the basis
of the NED frame. The quaternionq represents the relative
orientation of the BODY frame to the NED frame. However,
the IMU measurements are relative to ECI but expressed in the
BODY frame. In the presented concept the NED frame plays
the central role hence the navigation is called INS navigation.

C. Nonlinear state equations of long distance INS navigation

In the presence of GPS sensor it is useful to formu-
late the state equation in the NED frame. The state equa-
tion was already presented for the choice of statex =
(pT , vT , qT , bTa , b

T
ω )
T , input u = (ãT , ω̃T )T and output

y = (pT , vT )T . From the system noises̃anoise is additively
contained in f̃ b and ω̃noise is additively contained inω̃,
respectively. The outputs contain additive noisesp̃noise and
ṽnoise, respectively. The nonlinear state equations of INS
navigation have the form

ẋ = f(x, u, nx) (9)

y = h(x, ny) =

[

I3 0 0 0 0
0 I3 0 0 0

]

= Cx+ ny (10)

If the state estimation is performed in discrete time then
the state equations have to be converted from continuous to
discrete time by using Euler method or similar ones. If the
state estimation uses EKF then the state equations should be
linearized by the variables in every multiple of the sampling
time. During linearizing the task is to find the derivatives of the
right sidesfp, fv, fq of the state equation by their variables.
During derivation the curvaturesM,N,R can be assumed
constants. The requested form is:

δẋ = A(t)δx+B(t)δu+Bn(t)nx
δy = C(t)δx+ ny

(11)

In order to increase the precision the state estimator can
internally contain the integration of the state equations.The
estimated state can overwrite the computed state. The deriva-
tives can be used in the EKF (inner loop) running with the
high sampling frequency of the IMU.

If the motion is limited to the close neighborhood of the
initial stationary place of the vehicle then the INS navigation
can be simplified. In this case the motion is limited to the
neighborhood if the initial NED frame (calledNED0) which
will be considered to be a (quasi) inertial system (Flat Earth
Navigation).

D. Integrating magnetic sensor measurements

Let us assume that the vehicle is standing and magnetometer
and IMU measurements are available. The magnetic field mea-
surement isHb = (Hb
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b
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b
z)
T which can be transformed

in the NED frame byRnb that is:
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In stationary situation the accelerometer measures the neg-
ative gravity acceleration which would be in NED frame
(0, 0,−1)T if it is scaled in G, hence, transforming in BODY
we obtain

ã = f̃ = −
[

−Sθ CθSφ CθCφ
]T

(14)

φ = atan2(ay, az), θ = atan2(−Cφax, az) (15)

and thereforea1, a2, b1, b2 are cumputable.
On the other hand, the geometrical and magnetic North

directions in NED frame are not coinciding, the difference
between them is the magnetic declination angleδ, hence we
can form an electronic compassas follows:

Tδ =
Hn
y

Hn
x

=
b1Cψ + b2Sψ
a1Cψ + a2Sψ

⇒

Sψ(−Tδa2 + b2) = Cψ(Tδa1 − b1)

Tψ =
Tδa1 − b1
−Tδa2 + b2

atan−→ ψ (16)

Specially,δ = 3.8202 ∗ π/180 [rad] at Budapest Ferihegy.
Notice that a functionwrldmagm is available for determin-
ing δ anywhere from GPS coordinates and the actual date,
furthermore this function is updated in every fifth year.

III. STATE ESTIMATION USING EKFS

The most popular state estimator is the extended Kalman
filter (EKF). However, its stability is not guaranteed and it
needs the derivatives of the nonlinear functions in the discrete
time model which is a hard problem with increasing dimension
of the state vector.

EKF is a stochastic state estimation method based on the
linearization of the discrete time state equations in every
integer multiple of the sampling time. First the EKF algorithm
will be summarized. Then the derivatives of the state equations
will be given for INS navigation. Finally the application of
EKF will be demonstrated in vehicle navigation.

A. The EKF algorithm

Consider the discrete time nonlinear system in the form

xk+1 = f(xk, uk, wk)

yk = g(xk, zk)

wherew is the system noise andz is the measurement noise. It
is assumed thatw andz are not correlated and have zero mean,
their covariance matricesRv,k−1 and Rz,k are known. The
mean value of the input statex0 and its covariance matrixS0

should also be known. The EKF algorithm can be performed
by introducing the following notations:

Ak−1 =
∂f(x̂k−1, uk−1, 0)

∂x
Bw,k−1 =

∂f(x̂k−1, uk−1, 0)

∂w
,

Ck =
∂g(x̄k, 0)

∂x
Cz,k =

∂g(x̄k, 0)

∂z
, (17)

where x̂k is the estimated and̄xk the predicted value of
xk. The well-known two steps (Prediction, Time Update) can
be found for example in [1] or [9]. Notice thatSk is the
covariance matrix ofxk − x̂k while Mk is the covariance

matrix of xk − x̄k. The differentiations in (17) are parts of
the time update step. A collection of the necessary derivatives
of App, Apv etc. for INS navigation can be found in [9].

B. Observation model

It will be assumed that for the state estimation IMU (3D
accelerometer and 3D angular velocity sensor) and 3D magne-
tometer, both based on MEMS technology, and a GPS receiver
are available. The state estimation is solved by their fusion
taking into consideration the different sampling frequencies.
We assume the measured or computed output observation in
the formy = g(x) + ny.
The output mappings

y1 = g1(x) + ny1 =
[

Tδ −1 0
]

Rnb H
b + ny1 (18)

y2 = g2(x) + ny2 = Rnb (ã
b − ba) + ny2 (19)

y3 = g3(x) + ny3 = Rnb
[

1 0 0
]T

+ ny3 (20)

y4 = g4(x) + ny4 = p+ ny4 (21)

y5 = g5(x) + ny5 = v + ny5 (22)

These mappings reflect the following concept:

• Equation (18) is equivalent toTδHn
x = Hn

y , see also
(II-D).

• Equation (19) is the image of the acceleration sensor
measurement removing its bias which is the acceleration
minus the gravity accelerationgn = (0, 0, γ)T in NED
frame, i.e.fn, see also (II-B).

• Equation (20) assumes that the direction of thexB axes
is equal to the direction of the velocityvb = (U, V,W )T

in body frame, i.e.V =W = 0. This assumption means
that the kinematic angle of attack and the kinematic side
slip angle are both zero. This is only an approximation
whose error is removed to the noiseny3 . Critical may
be for quickly maneuvering unmanned vehicles (UAVs,
UGVs etc.) that the zero mean assumption of EKF cannot
be well satisfied. Notice thatg3 = (Rnb,11, R

n
b,21R

n
b,31)

T

which is a unit vector.
• y4 andy5 are immediately the GPS measurements.

The output measurements

y1 = 0 (23)
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y3 =
[

vN/‖v‖ vE/‖v‖ vD/‖v‖
]T

(25)

y4 = p (26)

y5 = v (27)

The following noise covariance matrices can be suggested:



covn1 =
([

Tδ −1 0
]

Rnb
)

covH̃b

([

Tδ −1 0
]

Rnb
)T

covn2 = Rnb coṽab (Rnb )
T (28)

covn3 = ‖covω̃b‖2





s1 0 0
0 s2 0
0 0 s3





As can be seen, we suggested to derive the covariance
of n3 from the covariance of̃ωb of the IMU. However, as
we mentioned above, experimentally chosens1, s2, s3 scaling
factors are needed in order to suppress the influence of not zero
mean error.

IV. I MPLEMENTATION CONCEPT OFINS NAVIGATION

We suggest the following EKF based state estimation con-
cept for long distance INS navigation using sensor fusion:

• The realization consists of the continuous integration
of the kinematic equations driven by the IMU sensors
and three EKFs (EKF1,EKF2, EKF3). Sampling time of
IMU, magnetometer and GPS may be for example 20ms,
50ms and 500ms, respectively. The declination angleδ
and the magnetic forceHn in NED can be computed
from the GPS position using thewrldmagm function in
MATLAB. Gravity acceleration can be determined from
GPS position using Rogers or Schwartz&Wei model.

• Sensor data are filtered and partly differentiated real time
before use. For filtering the Savitzky-Golay (polynomial)
FIR smoothing filter can be applied which is supported
in MATLAB function sgolay. Differentiation can be
solved based on its outputs and realized in a function
diffsgolay.

• Since the sampling timeTm of the 3D magnetometer
is near to the sampling timeT of the IMU (Tm > T )
henceH̃b will be re-sampled withT which simplify the
realization. Then we will have IMU and magnetometer
data with the same frequency.

• The integration of the kinematic state equations in INS is
performed for the whole statex = (pT , vT , qT , bTa , b

T
ω )
T

using Euler or Runge-Kutta methods (RK2, RK4).
• EKF1 is used for orientation estimation based on unit

quaternion. It works with sampling timeT , usesx1 =
(qT , bTω )

T and the sensor inputs of IMU and magnetome-
ter. Output mappings of the observation model areg1, g2,
output measurements arey1, y2 while output noises are
n1, n2. The estimated statêx1 of EKF1 overwrites the
actual value of portionx1 of the running kinematic
equations.

• EKF2 is used for estimating the whole state. It works
with sampling timeTGPS of GPS measurements, uses
x = (pT , vT , qT , bTa , b

T
ω )
T and the sensor inputs of

IMU, magnetometer and GPS position and state. Output
mappings of the observation model areg1, g2, g3, output
measurements arey1, y2, y3 while output noises are
n1, n2, n3. The estimated statêx of EKF2 overwrites
the actual value ofx of the running kinematic equations.

• EKF3 is used the correct the whole state in an external
loop. Its work is divided into two steps.

The main step is performed if GPS measurement is
obtained. It takes the difference of the computed posi-
tion and velocity (determined through integration of the
kinematic equations) and the measured GPS position and
velocity. The difference is calledδy = (δpT , δvT )T

and used as output measurement to produceδx̂. This
correction will be added to the actual value of the whole
state of the running kinematic equations:x := x + δx̂.
After the correction was made thenδx̂ is zeroed for the
next GPS step.
Since TGPS is large relative toT = TIMU hence
the linear behavior of EKF3 would be inaccurate for
application. Hence a finer stepTc = TGPS/nc will be
chosen such thatTc is integer multiple ofT . For example,
Tc =100ms can be chosen in the above example where
nc = 5. In every integer multiple ofTc a correction step
will be performed in order to compensate the difference
between linear approximation and nonlinear behavior.
The goal of the correction is to update the state and the
covariances in EKF3. The base of the correction is the
rule for time varying linear systemṡx = A(t)x+B(t)n,
in our case with noise input, by which

xk+1 = Φk xk + Γk nk

Φk = eAkTc , Γk =

∫ Tc

0

eAkσdσBk ≈ ΦkTcBk

Hence, if the state and noises are not correlated and the
noises have zero mean then the resulting state covariance
matrix (S) and the noise covariance matrix (Q) can be
computed recursively:

Sk+1 = ΦkSk, Qk+1 = Qk + (ΦkBk) T
2
c covn (ΦkBk)

T

If the GPS measurement arrives the EKF3 performs the
corrected prediction and time update steps for the outer
loop. After the correction a re-initialization follows ac-
cording toS0 := In andQ0 := 0n×n wheren = dim x.

V. EXPERIMENTAL RESULTS USINGUAV FLIGHT DATA

The concept of state estimation using three level Extended
Kalman Filters were tested for real flight data of a moving
UAV. The sensor was of type mNAV100CA integrating IMU,
magnetometer and GPS using MEMS technology. The UAV
was remotely controlled from the ground and the commands
were performed by the control system of the UAV. We obtained
the logged flight data from MTA SZTAKI Systems and Control
Laboratory in the frame of a cooperation.

As a consequence of the on-board control system the UAV
is moving dominantly in the direction of the bodyxB axes so
that the angle of attack is approximately zero and the error of
output mappingg3(x) is relatively small which can positively
influence the quality of state estimation.

On the other hand, because of quickly varying remote
commands, i.e. reference signals, the control signals are also
quickly varying and the same is valid also for the IMU sensor
signals. The acceleration can be 2G or higher during the
transients which makes the state estimation more difficult.



Some parts of the sensor signals are shown in Fig. 1-2 where
the above effects (quick changes, oscillations) can be well
detected. Beside the original sensor signals the filtered ones
using sgolay are also shown. In case of the GPS velocity
the derivatives can also be determined and used latter for
computingfn, the image of̃ab in the NED frame. Notice that
this signal can be computed from the GPS signals as well.
If the orientationRnb will be determined using the estimated
quaternion then the transformation can be performed and the
difference of the two values (fn−fncomp) has to be small if
the estimated orientation is acceptable. Small error can prove
good orientation estimation.
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Fig. 1. IMU acceleration and angular velocity

Some parts of the results of the state estimation using EKF1,
EKF2 and EKF3 with inner integration of the long distance
kinematic equations in INS assumption are shown in Figs. 3-5.
Estimated variables are denoted by ’h’ in the name.

Experiments using real vehicle’s data show that real time
implementation of the state estimation methods is possibleon
low-cost architectures.

The results in Fig. 4 show that the measured and the
estimated velocities are similar except on places wherea, ω
or H are quickly varying. Other type direct computation of
Rnb shows that not the estimation but the GPS sensor itself
is responsible for the differences, namely the applied GPS
version on the UAV cannot follow quick changes. Except of
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Fig. 2. Magnetic field and GPS position

these places,fnGPSh andfnIMU are also similar, see Fig. 5.
Moreover, the computed U, V, W behave also according tog3
in (20), hence the chosen measurement covariances can well
tolerate the nonzero-mean character of noises.

VI. CONCLUSION

In this paper a three-loop technique has been elaborated
for the state estimation using Extended Kalman Filters. EKF1
solves the quaternion based attitude estimation using IMU
and magnetometer. EKF2 improves the attitude estimation if
GPS information is present. EKF3 determines the remaining
state variables including the biases in an external loop if GPS
measurement is available. The method can well tolerate the
large difference between IMU and GPS frequencies and can
be applied for any type of outdoor vehicles. The efficiency of
the method was demonstrated for real flight data of an UAV.

Future research will concentrate on the identification of the
dynamic model of UAVs. Developments for the comparison
of EKF and UKF are in progress.
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Fig. 4. Estimation of velocity vNED and hight h
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