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Abstract—In this paper an improved approach is presented of the pointP is the shortest distance from the ellipse which
for the state estimation of unmanned aerial vehicles (UAVs). The defines the point) on the ellipse. In point) the tangent of

three-loop technique is based on Extended Kalman Filters. From the ellipse can be determined. The line throu@orthogonal

them EKF1 solve the quaternion based orientation (attitude) . . . o
estimation using IMU and magnetometer. EKF2 improves the to the tangent intersects theaxis in the pointk = (0, —c).

attitude estimation if GPS information is present. The third filter ~ The QR section is the normal to the tangent, its length\is
EKF3 determines the remaining state variables including the ~ GPS navigation is performed relative to ECEF while the
biases in an external loop if GPS measurement is available and |MU (3D acceleration and 3D angular velocity) sensors mea-

tolerates the large difference between IMU and GPS frequencies. ¢ e rejative to ECI. We prefer the use of INS navigation.
The method can be applied for state estimation of any type of

vehicles. It is especially useful for vehicles having large (2-3 G) 1
acceleration changes typical for UAVs. The results can latter be
used for identification of the nonlinear dynamic model of vehicles The orientation of thek,, frame relative tok,, i.e. the

(control surface, thrust and inertia effects) building the basis ér mapping fromk,, to K., can be found by using two rotations:
advanced control.

. INS NAVIGATION

Index Terms—State estimation, EKF approach, Sensor fusion, e _ s
UAV, Real flight data Ry, = Rot(z, ) Rot(y, (5 +¢)) (1)
The orientation matrix?;" (attitude, DCT) is the transforma-
|. INTRODUCTION tion from K to K,,. It can also be described by Euler (roll,

State estimation for UAVs (Unmanned Aerial Vehicles) is aitch, yaw) angles), ¢, ¢ or unit quaterniory = (s, w) where
intermediate important step in modeling and control. Theepa s = ¢0 € R" andw = (¢1, 42, ¢3)" € R? yielding
concentrates on the state estimation only. Popular appesac 0o o
are based on EKF (Extended Kalman Filter) [1], sigma-point Ry = Buler(9,6,) = Iy + 2slwx] + 2wx]fwx] ()
estimators among them UKF (Unscented Kalman Filter) [Here [wx] is the matrix of vector product. The quaternion
and symmetry-preserving observers (SPO) using Lie-Grogpduct isq; x g2 = (5182 — wi wa, wy X wa + $1ws + sowy ).
technique [3]. A comparison of the methods can be found inThere are different techniques for orientation character-
[4]. Novel methods of tuning the error state coveriance ixatrization, however conversion between them is possible [9].
were suggested in [5] and [6]. State estimation for a saifplaEspecially, letR? and ¢ the orientation description of<,
was considered in [7] and [8]. relative toX,, and denotev’, = (P, Q, R)T =: w the angular

In this paper an improved EKF method will be presentegelocity of the vehicle relative tdy,,.
for an UAV based on the kinematic differential equations of
navigation according to the WGS-84 standard of GPS. A. Differential equations of the orientation descriptions

The kinematic differential equations use the frames of ECI

(Earth Centered Inertia), ECEF (Earth Centered Earth Fjxed 10) 1 TpSy TpCy P
NED (North, East, Down) and Body (vehicle body) coordinate T 0 = 0 Oy -S4 Q 3
systems. In the sequel they will be referred by the lettees i, Y 0 Sy/Cy Cy/Co R

n and b, respectively.

ECEF is moving together with the earth. Its sidereal rotatio 170 —wf s 1 —Tw
rate relative to ECI isup = 7.2921151467 - 10_°rad/s. The ¢ = 3 { w  —[wx] } ( w ) 2 { Sw—wxw }
earth can be approximated by a rotational ellipsoid. 1 T
In ECEF frame each poinP can be characterized by a = = w=:T(q)w 4)
2| sl + [wx]

vectorr = (z,y,2)7 from the origin to the point. However,

in ECEF the point can also be identified by the geodetidere we used the short notatio§sC, T for sin, cos, tan.

coordinatesp = (p, A\, h)T, which are the latitude, longitude . o

and hight, respectively, angt, y, )" can be determined from B- Long distance INS navigation

them. Conversion methods amongst them are available. In case of long distance INS navigation the NED frame
First the intersection of the plane through and thez- cannot be considered fixed, i.e. it is a wandering NED frame.

axis with the rotational ellipsoid will be determined. Thelhe orientation of the body frame will be considered rektiv

intersection is an exemplar of the rotated ellipse. Thethigh to the moving NED.



Denote M and N the cross-directional curvatures aitl C. Nonlinear state equations of long distance INS navigatio

their average value: In the presence of GPS sensor it is useful to formu-
a(l —e?) a late the state equation in the NED frame. The state equa-
M = A= 2522 N=————ry R=VvMN (5) tion was already presented for the choice of state=
v y1-es (p", 0T, q" 0T b, input w = (a”,o")” and output

- _ = (pT T)T From the system noises,.;.. is additively

Denote f* the 3D measurement of the acceleration sensor &;ntamed inf* and & is additively contained inw,
noise

the IMU andb, its bias then its value in the NED frame 'Srespecnvely The outputs contain additive noiges;. and

n n( fb
J" = Ry(f” = bs). Notice thatf" contains also the gravity ; = = esactively. The nonlinear state equations of INS
effect g" = (00+)T whose approximation by the S'mplenavigation have the form

Rogers model is/(h) = go(R)/(R+h))? whereh is the hight

and go = 9.81425 is an average value fds = 0. Similarly, = f(z,u,ng) 9)
denotei’ the 3D measurement of the angular velocity sensor ;

neas _ I, 0 0 0 0
of the IMU andb,, its bias. Notice that the IMU measures the ¥ = h(z.ny) =1 o ;g o o | =Cz+ny,  (10)

acceleration and the angular velocity relative to ECI. 8inc

wh, = RY(w! +w? ) +w?, therefore for constant bias yields: If the state estimation is performed in discrete time then

the state equations have to be converted from continuous to

wi=wl, =" — b, — R (W +wh) discrete time by using Euler method or similar ones. If the
c, vg/(N + h) state estimation uses EKF then the state equations should be
Wl 4wl = 0 We + —vn /(M + h) linearized by the variables in every multiple of the samplin
-8, —vgT,/(N + h) time. During linearizing the task is to find the derivativéste
] ) ] right sidesf,, f,, f, of the state equation by their variables.
where is the geodetic latitude. During derivation the curvatured/, N, R can be assumed
Kinetic equations of GPS with IMU10]: constants. The requested form is:
0 = A(t)dz + B(t)ou + By (t)n,
: 1 (11)
¥ Mtk (1) 0 UN dy = C(t)ox + ny
),‘ = 0 (N¥h)C,, 0 VE (6) In order to increase the precision the state estimator can
h 0 0 -1 UD internally contain the integration of the state equatiofise
estimated state can overwrite the computed state. Theaderiv
UN tives can be used in the EKF (inner loop) running with the
g | =T+ g+ (7) high sampling frequency of the IMU.
Up If the motion is limited to the close neighborhood of the
v o initial stationary place of the vehicle then the INS navigat
o [+ o] So+ % onan . 1 the INS.
(N+h)C, M+h can be simplified. In this case the motion is limited to the
(Nfiﬁ)% + 2w | NS, +vp |2we + m} C, ne_zighborhoo_d if the initial NED frgme (c_aIIeNEDO) which
vk, . ok will be considered to be a (quasi) inertial system (Flat fEart
M+h — “VEWe“o = Nip Navigation).
1 —wT g D. Integrating magnetic sensor measurements
1=3 { sls + [wx] ] ®) Let us assume that the vehicle is standing and magnetometer

2
(@b — by, — [I — 2s[wx] + 2[wx] [wx]] (W2 +w?,)) and IMU measurements are available. The magnetic field mea-

surement isH® = (H?, H{;,Hb) which can be transformed

The derivatives of the constant biases are sinibglyz 0 and in the NED frame byR}' that is:

b, = 0.
ch.g CwSequs — chqg CwS9C¢ + S¢S¢
Notice that in the above kinematic equations the ’positiorR;’ = SypCo  SySeSy+ CypCy  SySeCy — CySy
vector p = (p, A\, h)T represents the real position vector —Sy CoSy CoCly

r = (x,y,2)T from ECEF to BODY in abstract form elimi-
nating the large order of the componentsroflits derivative

R = v = (vy, vg, vp)T is the relative velocity of the HY = (CoH; +S@S¢H5 +SpCoH2)Cy

vehicle to the (rotating) ECEF frame expressed in the basis +(—C¢H§ + S¢H§)Sw

of the NED frame. The quaterniop represents the relative = 10y + azSy (12)
orientation of the BODY frame to the NED frame. However, H - (C ' § H")C

the IMU measurements are relative to ECI but expressed in the Y oy o2/

BODY frame. In the presented concept the NED frame plays +(CoHy + 595¢H§ +89CyH2)Sy

the central role hence the navigation is called INS navigati =1 b0y + b2Sy (13)



In stationary situation the accelerometer measures the nematrix of x;, — ;. The differentiations in (17) are parts of
ative gravity acceleration which would be in NED framehe time update step. A collection of the necessary deviegti
(0, 0,—1)T if it is scaled in G, hence, transforming in BODYof A,,, A,, etc. for INS navigation can be found in [9].
we obtain

i=f=— [ —Sy CoSs CoCy }T B. Observation model
0 = atan2(—Cyay, a,)

(14)
(15) It will be assumed that for the state estimation IMU (3D
accelerometer and 3D angular velocity sensor) and 3D magne-
and thereforeuy, as, by, b2 are cumputable. tometer, both based on MEMS technology, and a GPS receiver
On the other hand, the geometrical and magnetic Norfle available. The state estimation is solved by their fusio
directions in NED frame are not coinciding, the differencgaking into consideration the different sampling frequiesc

between them is the magnetic declination angléience we \we assume the measured or computed output observation in
can form an_electronic compasas follows: the formy = g(x) + n,,.

Hy 5010y + 628y N The output mappings

¢ = atan2(ay, a,),

Ts

- Hp  aiCy +azSy yi=g(x)+ny, =[Ts -1 0]RyH +n, (18)

S(=Too + ba) = Cy (Toar = b1) yo = 92(2) + ny, = B (@ = ba) + 1, (19)
Tw=%ﬂw 16)  yy=gs(@)+ny, =Ry[1 0 0] +ny, (20)

Specially,§ = 3.8202 * 7/180 [rad] at Budapest Ferihegy. ¥+~ 9a(x) + 1yy =P+ 1y (1)
Notice that a functionwridmagmis available for determin-  ¥s = 95(%) + 1y, = v+ 1y, (22)

ing 6 anywhere from GPS coordinates and the actual date, ) )

furthermore this function is updated in every fifth year. ~ |11€S€ mappings reflect the following concept:

« Equation (18) is equivalent tasH; = H;, see also
(11-D).

Equation (19) is the image of the acceleration sensor
measurement removing its bias which is the acceleration
minus the gravity acceleratiog” = (0,0,v)” in NED
frame, i.e.f", see also (II-B).

Equation (20) assumes that the direction of ihe axes

is equal to the direction of the velocity = (U, V, W)T

in body frame, i.eV = W = 0. This assumption means

Ill. STATE ESTIMATION USING EKFs

The most popular state estimator is the extended Kalman,
filter (EKF). However, its stability is not guaranteed and it
needs the derivatives of the nonlinear functions in therdtsc
time model which is a hard problem with increasing dimension
of the state vector. o

EKF is a stochastic state estimation method based on the
linearization of the discrete time state equations in every

integer multiple of the sampling time. First the EKF alglonit
will be summarized. Then the derivatives of the state equoati
will be given for INS navigation. Finally the application of

that the kinematic angle of attack and the kinematic side
slip angle are both zero. This is only an approximation
whose error is removed to the noisg,. Critical may

EKF will be demonstrated in vehicle navigation.

A. The EKF algorithm
Consider the discrete time nonlinear system in the form

be for quickly maneuvering unmanned vehicles (UAVS,
UGVs etc.) that the zero mean assumption of EKF cannot
be well satisfied. Notice thafs = (R}, Ry Ry's))”
which is a_unit vectar

o y4 andys; are immediately the GPS measurements.

The output measurements

Tpp1 = [(@p, up, wi)
Yk :g(*rkvzk)

wherew is the system noise andis the measurement noise. Ity; =0 (23)
is assumed that andz are not correlated and have zero mean, N
their covariance matrice®, -1 and R. . are known. The ,, — [ 4, | —¢"— (24)

mean value of the input state and its covariance matris
should also be known. The EKF algorithm can be performed
by introducing the following notations:

_ Of(#—1,up_1,0)

—VE {2% + (Nfﬁ)cw Se + TR

Of (1, up_1,0) [7(%”;;3)0@ + 2%2] UNSp+ D | 2we + 7(N+“;§)CJ c,

Ap—1 = o By k-1 = e : . Sy 0}
_ N v we S
Cn — Jg(T, 0) o dg(T, 0) 17 Men prene A
T =g 0 @D gy =/l vs/llvl v/l ] (25)
where 2, is the estimated and:; the predicted value of Y4+ =p (26)
xy. The well-known two steps (Prediction, Time Update) can; = v 27)

be found for example in [1] or [9]. Notice that is the
covariance matrix ofry — & while M, is the covariance The following noise covariance matrices can be suggested:




covur = ([ 75 —1 0]RP) covg ([T —1 0]Rp)"

COV,2 = Ry covis (RP)" (28)
S1 0 0

COV,3 = ||[COVgell2 | O s2 O
0 0 S3

As can be seen, we suggested to derive the covariance

of ns from the covariance of:® of the IMU. However, as
we mentioned above, experimentally chosenss, s3 scaling

factors are needed in order to suppress the influence of rmt ze

mean error.

IV. IMPLEMENTATION CONCEPT OFINS NAVIGATION

We suggest the following EKF based state estimation con-

cept for long distance INS navigation using sensor fusion:

o The realization consists of the continuous integration
of the kinematic equations driven by the IMU sensors
and three EKFs (EKF1,EKF2, EKF3). Sampling time of
IMU, magnetometer and GPS may be for example 20ms,
50ms and 500ms, respectively. The declination argle
and the magnetic forcé/™ in NED can be computed

from the GPS position using tha | dnagmfunction in

MATLAB. Gravity acceleration can be determined from

GPS position using Rogers or Schwartz&Wei model.

« Sensor data are filtered and partly differentiated real time
before use. For filtering the Savitzky-Golay (polynomial)
FIR smoothing filter can be applied which is supported

in MATLAB function sgol ay. Differentiation can be

solved based on its outputs and realized in a function

di f f sgol ay.

o Since the sampling timd;, of the 3D magnetometer

is near to the sampling timé& of the IMU (T, > T)
henceH" will be re-sampled witdl" which simplify the

The main step is performed if GPS measurement is
obtained. It takes the difference of the computed posi-
tion and velocity (determined through integration of the
kinematic equations) and the measured GPS position and
velocity. The difference is calledy = (dp’, dvT)T
and used as output measurement to proddice This
correction will be added to the actual value of the whole
state of the running kinematic equations:= x + 0z.
After the correction was made theén: is zeroed for the
next GPS step.

Since Tgps is large relative toT = Trpu hence

the linear behavior of EKF3 would be inaccurate for
application. Hence a finer st€f. = Tgps/n. will be
chosen such thét. is integer multiple off". For example,

T. =100ms can be chosen in the above example where
n. = 5. In every integer multiple of’,. a correction step
will be performed in order to compensate the difference
between linear approximation and nonlinear behavior.
The goal of the correction is to update the state and the
covariances in EKF3. The base of the correction is the
rule for time varying linear systems= A(t)z + B(t)n,

in our case with noise input, by which

Tpy1 = Py + T'ing

T.
P = eAkT“, 'y = /
0

Mo By, ~ By T.B),
Hence, if the state and noises are not correlated and the
noises have zero mean then the resulting state covariance
matrix (S) and the noise covariance matrig) can be
computed recursively:

Sk41 = PrSk, Qri1 = Qi + (®xBy) T2 cov, (q)kBk)T

If the GPS measurement arrives the EKF3 performs the

realization. Then we will have IMU and magnetometer
data with the same frequency.

The integration of the kinematic state equations in INS is
performed for the whole state = (p”, v, ¢7, b1, 61T

' Ya o Yw

using Euler or Runge-Kutta methods (RK2, RK4). V. EXPERIMENTAL RESULTS USINGUAV FLIGHT DATA

EKF1 is used for orientation estimation based on unit The concept of state estimation using three level Extended
quaternion. It works with sampling tim&, usesz; = Kalman Filters were tested for real flight data of a moving
(¢T,bI)T and the sensor inputs of IMU and magnetomeJAV. The sensor was of type mNAV100CA integrating IMU,
ter. Output mappings of the observation model@reg., magnetometer and GPS using MEMS technology. The UAV
output measurements age, y» While output noises are was remotely controlled from the ground and the commands
n1, ne. The estimated state, of EKF1 overwrites the were performed by the control system of the UAV. We obtained
actual value of portionz; of the running kinematic the logged flight data from MTA SZTAKI Systems and Control
equations. Laboratory in the frame of a cooperation.

EKF2 is used for estimating the whole state. It works As a consequence of the on-board control system the UAV
with sampling timeTsps of GPS measurements, usess moving dominantly in the direction of the body; axes so

r = (pF,oT,¢",bL bT)T and the sensor inputs ofthat the angle of attack is approximately zero and the erfror o
IMU, magnetometer and GPS position and state. Outpotitput mappingys(x) is relatively small which can positively
mappings of the observation model afe g2, g3, output influence the quality of state estimation.

measurements argi, y», y3 While output noises are On the other hand, because of quickly varying remote
ni, na, nz. The estimated staté of EKF2 overwrites commands, i.e. reference signals, the control signalslace a
the actual value of of the running kinematic equations.quickly varying and the same is valid also for the IMU sensor
EKF3 is used the correct the whole state in an externsignals. The acceleration can be 2G or higher during the
loop. Its work is divided into two steps. transients which makes the state estimation more difficult.

corrected prediction and time update steps for the outer
loop. After the correction a re-initialization follows ac-
cording to Sy := I,, and Qg := 0,,x, Wheren = dim z.



Some parts of the sensor signals are shown in Fig. 1-2 where
the above effects (quick changes, oscillations) can be well
detected. Beside the original sensor signals the filterazs on
usingsgol ay are also shown. In case of the GPS velocity
the derivatives can also be determined and used latter for
computingf™, the image ofi® in the NED frame. Notice that
this signal can be computed from the GPS signals as well.
If the orientationRzy will be determined using the estimated
guaternion then the transformation can be performed and the
difference of the two values i —f nconp) has to be small if
the estimated orientation is acceptable. Small error canepr
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Fig. 1. IMU acceleration and angular velocity
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Fig. 2. Magnetic field and GPS position

these placed,nGPSh andf nl MJ are also similar, see Fig. 5.
Moreover, the computed U, V, W behave also according3to

in (20), hence the chosen measurement covariances can well
tolerate the nonzero-mean character of noises.

VI. CONCLUSION

In this paper a three-loop technique has been elaborated
for the state estimation using Extended Kalman Filters. EKF
solves the quaternion based attitude estimation using IMU
and magnetometer. EKF2 improves the attitude estimation if
GPS information is present. EKF3 determines the remaining

Some parts of the results of the state estimation using EKFstate variables including the biases in an external loopASG
EKF2 and EKF3 with inner integration of the long distanc&easurement is available. The method can well tolerate the
kinematic equations in INS assumption are shown in Figs. 3/8rge difference between IMU and GPS frequencies and can

Estimated variables are denoted by 'h’ in the name.

be applied for any type of outdoor vehicles. The efficiency of

Experiments using real vehicle’s data show that real tinie€ method was demonstrated for real flight data of an UAV.

implementation of the state estimation methods is possible

low-cost architectures.
The results in Fig. 4 show that the measured and tleé EKF and UKF are in progress.

estimated velocities are similar except on places where
or H are quickly varying. Other type direct computation of

Future research will concentrate on the identification ef th
dynamic model of UAVs. Developments for the comparison
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