AI-based Computer Vision via Deep Learning

Konzulens:
Dr. Szemenyei Márton
Tárgy:
Önálló laboratórium 1 - Egészségügyi mérnök, MSc Eü.
Önálló laboratórium 2 - Egészségügyi mérnök, MSc Eü.
Önálló laboratórium 1 - Irányító és látórendszerek MSc. főspec.
Önálló laboratórium 1 - Vizuális informatika MSc. főspec.
Önálló laboratórium 2 - Irányító és látórendszerek MSc. főspec.
Önálló laboratórium 2 - Vizuális informatika MSc. főspec.
Önálló laboratórium - Irányítórendszerek ágazat, BSc Vill.
Önálló laboratórium - Szoftverfejlesztés és rendszertervezés specializáció, BSc Info.
Projektfeladat mechatronikusoknak
Hallgatói létszám:
1
Folytatás:
Szakdolgozat / Diplomaterv
TDK dolgozat
Leírás:

Nowadays, computer vision is becoming increasingly popular both in the industry and in various research laboratories. The applications of this field are nearly endless, ranging from self-driving cars to automated production lines and security technologies. Within the field of computer vision, in the past one to two decades, various learning methods — particularly the application of deep neural networks — promise the greatest opportunities.

In the project laboratory topic, the student’s task is to become familiar with deep learning methods and their applications, and then use them to provide a solution to a selected problem.

Within this field, the following tasks can be performed:

  • Classification of visual (or possibly audio) information. (Recognizing people, animals, vehicle types, tumors, words, intentions, actions, traffic signs, etc.)
  • Detection/segmentation performed on visual (or possibly audio) information. (Identifying relevant objects for self-driving cars, speech enhancement, etc.)
  • Tasks performed on sequences of visual (or possibly text) data. (Video analysis, image captioning, speech recognition, etc.)
  • Generation of images (or possibly sounds).
  • Development of higher cognitive functions based on audiovisual input. (Playing various computer games, implementing attention and memory, question-answer systems.)
  • Investigation of high-level modern learning methods. (Curiosity-driven learning, meta-learning, etc.)
  • Individual ideas.

Requirements for the topic:

  • Knowledge of object-oriented programming (C++/Python, or similar).
  • Good command of English.

Recommended for the topic:

  • Minimal image (signal) processing knowledge.
  • Minimal mathematical knowledge.